
ccTalk Serial Communication Protocol
-

Generic Specification
-

Issue 4.5

Money Controls does not accept liability for any errors or omissions contained
within this document or for any changes made to the standard from one issue
to the next. Money Controls shall not incur any penalties arising out of the
adherence to, interpretation of, or reliance on, this standard whether it be now
or in the future.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 2 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

Revision History

Issue Date Comments
1.0 29-04-96 Draft specification

< intervening revision history has been archived >
3.1 18-05-99 New section numbering

Miscellaneous clarifications and additional text
9600 baud is the preferred operating speed

3.2 03-02-00 Addition of error codes 27 & 28
Addition of ‘Money Controls’ to Table 7
New headers added - see below
Some headers have new data format for Serial Compact Hopper Mk2
Revised default addresses : Table 2 - ccTalk Standard Category Strings
Inter-byte delay < 10ms : See ‘Timing Requirements’
Application specific header range is 99 to 20 rather than 99 to 7

4.0 13-06-00 Major document restructuring and text revision
New headers to support bill validators

15-05-01 Update to Appendix 10 - Common Country Codes
Stated conformance to ISO 3166-1

4.1 24-05-01 Modification to recommended ccTalk interface circuit
‘Circuit 1 - ccTalk Standard Interface’

4.2 05-10-01 Addition of connector type 9 for serial universal hopper
Serial Protocol - Voltage Levels. Allowable ranges now defined.

4.3 16-04-02 Help text now included for error and fault codes. See Tables 2 & 3.
ISO 3166 list now fully comprehensive. See Appendix 10.
Default data voltage is +5V. See Appendix 6.

02-01-03 Removal of Controller category (= address 3) from Table 1
05-08-03 Link added to cctalk.org web site

Change to contact FAX number
Route code 255 added to ccTalk header 154, ‘Route bill’
Clarification of when address is changed with ccTalk header 251,
‘Address change’.
Addition of Appendix 11 - Coin Acceptor Messaging Example
Update of Table 6 - ccTalk Standard Manufacturer Strings

30-09-03 NAK is now a recognised reply from ccTalk header 142, ‘Finish bill table
upgrade’ to indicate the process failed.

30-10-03 Type 8 connector : note added about polarity
11-11-03 Added Appendix 12 : Italian Flavour Specification Change

Added latest product naming examples
19-03-03 Zener versus Schottky diode clarification in Circuits 1 to 4
29-03-04 Header 163, ‘Test hopper’. Added flag explanation.

Appendix 10 : Common Country Codes : Additional exception
Addition of header 135, ‘Set accept limit’

4.4 06-04-04 Added section on BACTA Token Selection
05-07-04 Added new bill event code, ‘Anti-string mechanism faulty’, to Table 7.

Text ‘(or reject or other event) ’ added to header 162 description.
Circuit 4 - PC Interface. Alternative transistors given.

04-08-04 New section : Discussion of Transitory versus Steady-state Events
Removed from Core Plus : Header 169, Request address mode
Removed from Core Plus : Header 3, Clear comms status variables
Removed from Core Plus : Header 2, Request comms status variables
Calculate ROM checksum : CRC checksum can be calculated with a
fixed seed if required
Request variable set - 2 variables defined for bill validators
Addition of Appendix 14 - Large Packet Exchange
Minor text clarification to Header 2, Request comms status variables
Scope plots added to show ccTalk voltage levels and timing

11-01-05 Text changed to ‘(strictly speaking an attempted accept sequence)’ in
header 162 description.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 3 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

25-01-05 Table 1 : Added Reel equipment at address 30
Table 1 : Added RNG at address 120
Table 3 : Manufacturer-specific fault code can be sent after ‘255’
Table 6 : Added Starpoint Electrics to ccTalk User Group
Table 6 : Added Intergrated(sic) Technology Ltd to ccTalk User Group
Added 5 commands for an accumulator hopper, headers 130 to 134
Expanded status register in header 163, ‘Test hopper’, to include
accumulator hopper functionality
Specification of rise & fall time added
New connector type 6 part numbers

16-05-05 Re-worked section on BACTA Token Selection
24-08-05 Addition of error code 29 : Accept gate open not closed

Addition of error code 30 : Accept gate closed not open
Addition of fault code 42 : Accept gate failed open
Addition of fault code 43 : Accept gate failed closed

23-12-05 Header 173, ‘Request thermistor reading’ has new Celsius format
Addition of Header 129, ‘Read barcode data’
Addition of bill event code 20, ‘Barcode detected’
Appendix 15 created – Bill Types and Bill Values

28-12-05 Creation of new section ‘ccTalk RFC’ in Part 4 / Section 4 of standard.
Proposed changes to the ccTalk specification will be placed here.

4.5 08-06-06 Addition of new fault codes 44 and 45 to Table 3.
21-06-06 Change ISO 3166 country code for Serbia & Montenegro from SX to CS
03-07-06 Global replacement of cctalk with ccTalk – marketing requirement

Debug address range added to Table 1 - ccTalk Standard Category Strings
& Default Addresses
Format restriction on Header 148, ‘Read opto voltages’, removed to
support a wider range of devices
Added Appendix 16 - Bill Acceptor Messaging Example
Various references to the fact that ccTalk can operate at very high baud
rates over USB
Interconnection distances changed from imperial to metric
Retransmission policy : retransmission strongly recommended
Appendix 6 : inclusion of VCOM and very high baud rates
Added Section 5 – ccTalk over USB

23-10-06 Added Sao Tome and Principe country code as ST
Added RFC/003

08-01-07 New baud rates defined in Appendix 6 ‘Naming Convention’, for use
with ccTalk over USB (see Part 4)
Addition of new fault codes 46, 47 and 48 to Table 3.

06-02-07 Warning added concerning the use of the Broadcast Message with
Encryption
Clarification on the timing of Address poll, header 253
Clarification on the timing of Address clash, header 252
Addition of new ‘Changer’ standard category string on address 55.
Creation of country code ‘BC’ to designate barcode tickets & coupons.
Rename ‘ccTalk level’ in Header 4, ‘Request comms revision’ as
‘Release’ number. No change to how it is used. Updated section 15.2.

14-02-07 Added AlfaNet informatika d.o.o to ccTalk User Group
Added Crane CashCode Company to ccTalk User Group
Added NAK as recognised response to header 138, ‘Finish firmware
upgrade’

26-03-07 Added new changer class support headers 114 to 128
Added fault code 49 ‘Fault on opto sensor’
Un-obsoleted (i.e. reinstated) fault codes 23 ‘Payout motor fault’
and 26 ‘Payout sensor fault’ for use on changers
New section ‘Use of Decimal Points in the Value Code’ for note identifiers.

09-07-07 Addition of new fault codes 49 to 53 to Table 3.
Un-obsoleted fault code 27, ‘Level sensor error’
Added WH Münzprüfer to ccTalk User Group

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 4 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

Table 1 : Added Hopper Scale at address 130
Table 1 : Added Coin Feeder at address 140

13-08-07 Addition of error code 31 : Manifold opto timeout
Addition of error code 32 : Manifold opto blocked

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 5 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

Command Headers Added Since Version 4.4

Command support has now been added for a class of Changers (coins in / coins out
recyclers)

Header 128, ‘Request money in’
Header 127, ‘Request money out’
Header 126, ‘Clear money counters’
Header 125, ‘Pay money out’
Header 124, ‘Verify money out’
Header 123, ‘Request activity register’
Header 122, ‘Request error status’
Header 121, ‘Purge hopper’
Header 120, ‘Modify hopper balance’
Header 119, ‘Request hopper balance’
Header 118, ‘Modify cashbox value’
Header 117, ‘Request cashbox value’
Header 116, ‘Modify real time clock’
Header 115, ‘Request real time clock’
Header 114, ‘Request USB id’

Command Headers Modified Since Version 4.4

Header 148, ‘Read opto voltages’. No format restrictions on return data.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 6 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

Part 1 - Contents

Note that the ccTalk serial communication protocol generic specification is now
published in a 4 part document to make it easier to manage. Each part has its own
contents page.
Part 1 – Historical, introduction & protocol description. Multi-drop command

extension set.
Part 2 – Detailed command list.
Part 3 – Appendices, tables, circuits and general cross-reference information.
Part 4 – Frequently asked questions, peripheral design rules, white papers, RFC and

ccTalk over USB.

1. HISTORICAL..8

2. INTRODUCTION ... 8

2.1 SERIAL VERSUS PARALLEL : A COIN INDUSTRY PERSPECTIVE ..8
2.2 WHAT IS CCTALK ? ...9

2.2.1 Can I use it over USB ? .. 9
2.2.2 Is it a Multi-Master Protocol ? ...10

2.3 WHAT ARE ITS CAPABILITIES AND FEATURES ?... 10
2.4 IS IT DIFFICULT TO IMPLEMENT ? ..11
2.5 ARE THERE ANY ROYALTIES TO PAY OR LICENCES TO OBTAIN ? ..12
2.6 A QUICK EXAMPLE OF A CCTALK MESSAGE...12
2.7 COMPARISON WITH OTHER SERIAL CONTROL PROTOCOLS.. 12

3. SERIAL PROTOCOL - TIMING..13

3.1 BAUD RATE ..13

4. SERIAL PROTOCOL - VOLTAGE LEVELS... 14

4.1 OSCILLOSCOPE PLOTS...15

5. THE SERIAL DATA LINE.. 16

5.1 RS485 DRIVERS ...16

6. CONNECTOR DETAILS...17

6.1 TYPE 1 (STANDARD INTERFACE, IN-LINE CONNECTOR) ..17
6.2 TYPE 2 (STANDARD INTERFACE, MOLEX CONNECTOR)..18
6.3 TYPE 3 (LOW POWER INTERFACE)..18
6.4 TYPE 4 (EXTENDED INTERFACE, IN-LINE CONNECTOR) ..19
6.5 TYPE 5 (AWP INDUSTRY-STANDARD INTERFACE)...19
6.6 TYPE 6 (SERIAL HOPPER INTERFACE, VERSION 1)...20
6.7 TYPE 7 (STANDARD INTERFACE, JST CONNECTOR) ... 20
6.8 TYPE 8 (SERIAL HOPPER INTERFACE, VERSION 2)...21
6.9 TYPE 9 (UNIVERSAL HOPPER INTERFACE) .. 21
6.10 CONNECTOR WIRING COLOURS...22

7. MESSAGE STRUCTURE .. 23

7.1 STANDARD MESSAGE PACKETS, SIMPLE CHECKSUM .. 23
7.2 STANDARD MESSAGE PACKET, CRC CHECKSUM..24
7.3 ENCRYPTED MESSAGE PACKET, CRC CHECKSUM ..24
7.4 PROTOCOL LAYERING...24
7.5 DESTINATION ADDRESS ..25

7.5.1 The Broadcast Message .. 25
7.5.1.1 Warning : Broadcast Message with Encryption .. 25

7.6 NO. OF DATA BYTES... 26
7.6.1 Long Transfers..26

7.7 SOURCE ADDRESS ..27

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 7 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

7.8 HEADER..27
7.9 DATA.. 27
7.10 SIMPLE CHECKSUM ...28
7.11 CRC CHECKSUM... 28

7.11.1 A Little Checksum Theory...28
7.12 ANATOMY OF AN EXAMPLE MESSAGE SEQUENCE...29

8. THE ACKNOWLEDGE MESSAGE... 30

8.1 THE NAK MESSAGE... 30
8.2 THE BUSY MESSAGE...30

9. COMMANDS THAT RETURN ASCII STRINGS .. 31

9.1 FIXED LENGTH STRINGS..31

10. IMPLEMENTATION DETAILS...31

11. TIMING REQUIREMENTS..32

11.1 BETWEEN BYTES ... 32
11.2 BETWEEN COMMAND AND REPLY.. 32

12. ACTION ON ERROR... 33

12.1 RETRANSMISSION.. 33

13. UNRECOGNISED HEADERS .. 33

14. PRACTICAL LIMITATIONS IN VERY LOW COST SLAVE DEVICES 33

15. COMMAND SET .. 34

15.1 COMMAND EXPANSION ...34
15.1.1 Expansion Headers...34
15.1.2 Context Switching ... 34

15.2 RELEASE NUMBER ..35

16. IMPLEMENTING CCTALK ON A NEW PRODUCT...35

17. IMPLEMENTATION STANDARDS.. 36

18. COIN ACCEPTORS - CREDIT POLLING ALGORITHM...36

18.1 THE CREDIT POLL WATCHDOG ...36

19. WRITING GENERIC HOST SOFTWARE APPLICATIONS... 37

19.1 DESIGNING A CCTALK API .. 37

20. MULTI-DROP CONSIDERATIONS.. 38

20.1 PRACTICAL LIMITATIONS OF MULTI-DROP NETWORKS ...39
20.1.1 Maximum Number of Network Devices .. 39

20.1.1.1 Logical Addressing ... 39
20.1.1.2 Electrical Loading ... 39
20.1.1.3 Address Randomisation .. 39

20.2 MDCES - MULTI-DROP COMMAND EXTENSION SET .. 40
20.2.1 Address Poll, Header 253...41
20.2.2 Address Clash, Header 252 .. 42
20.2.3 Address Change, Header 251 ...43
20.2.4 Address Random, Header 250 ..43

21. DISCUSSION OF TRANSITORY VERSUS STEADY-STATE EVENTS44

22. CONTACT INFORMATION ..47

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 8 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

1. Historical

Jun 87 : Coin Controls Ltd abandons I2C development on future products in favour of
the RS232 protocol.
Apr 96 : ‘ccTalk’ specification created after much consultation within the industry.
Aug 98 : A meeting of coin mechanism manufacturers in Tamworth, England agrees
on a common connector supporting both ccTalk and Mars HI2 for AWP machines.
The data format was standardised at +12V, 9600 baud.
Jun 99 : Coin Controls Ltd sets up a ccTalk User Group to promote ccTalk within the
industry and to provide a formal mechanism for both obtaining feedback from users
and for expanding the specification into new areas.
Jun 00 : Protocol proving successful in many diverse applications. Specification
updated to include an ultra-secure compact hopper and a new range of ccTalk bill
validators
Aug 00 : Meeting in Burton-on-Trent, England to discuss the future of ccTalk in
relation to bill validators. Encryption and CRC checksums discussed.
Nov 00 : Encryption and CRC checksums added into the protocol for BNVs. BNV
simulation software made available to manufacturers.
Jan 04 : Italy adopts ccTalk throughout their AWP platforms and a variety of products
are put through homologation. Hoppers are used ‘unencrypted’.
Dec 05 : Money Controls successfully tests ccTalk running at 1Mbps over a USB
virtual COM port link leading to exciting new areas of product development.
Apr 06 : The tenth anniversary of ccTalk. Now widely established throughout the
industry but facing competition from the ‘pure’ USB protocols.

2. Introduction

2.1 Serial versus Parallel : A Coin Industry Perspective

Both serial and parallel interface techniques have advantages and disadvantages.
Parallel interfaces are fast and in some applications provide the simplest way of
transferring information. However, cable harnessing costs can reach a significant
proportion of the original equipment costs as the number of data lines increase.
Problems with crimp connectors and dry solder joints can give reliability issues when
a large number of wires are used to send data. Serial interfaces on the other hand
reduce cabling costs to a minimum and often enable extra features (such as self-
testing and expansion) to be incorporated into the product with very little overhead.
Serial interfaces also provide a simple and efficient way of connecting two or more
devices together in situations which would be totally impractical with a parallel
interface. This reduces cabling costs even further in applications which require a
number of devices to be connected to a single host controller.

The cash handling industry now embraces many different aspects of technology from
coin and token acceptors through bill validators and magnetic / smart card readers to
intelligent payouts and changers. A way of connecting all these different types of
peripherals in a simple and consistent manner is a stated aim of many manufacturers
and a serial bus is the obvious solution.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 9 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

2.2 What is ccTalk ?

ccTalk (pronounced see-see-talk) is the Money Controls (formerly Coin Controls,
hence coin controls Talk) serial communication protocol for low speed, control
networks. Lower case ‘c’ followed by upper case ‘T’ on ccTalk is the official
marketing brand name and should be used on new designs in place of the older
‘cctalk’ which was in lower case throughout. Note that the following are strongly
discouraged :- ccTALK, CCtalk, CCTalk and CCTALK.

The protocol was designed to allow the interconnection of various types of cash
handling and coin validation equipment on a simple 3-wire interface (power, data and
ground). A basic application consists of one host controller and one peripheral device.
A more complicated application consists of one host controller and several peripheral
devices with different addresses. Although multi-drop in nature, it can be used to
connect just one host controller to one slave device.

The protocol is really concerned with the high level formatting of bytes in a RS232-
like (the voltages are not RS232 voltages) data stream which means that it is
immediately accessible to a huge range of applications throughout the control
industry. There is no requirement for custom integrated circuits, ASIC's, special cables
etc. It is cheap to manufacture and easy to implement.

The protocol was created from the bottom end up. Rather than starting with a full-
blown networking or vending protocol and cutting out the features which weren't
needed, it was developed from a simpler RS232 format in use at Money Controls for
many years. This means it is a protocol ideal for use in the money industry with no
excess fat. There are no complicated logging-on or transaction processing sequences
to go through. It does a simple job with the minimum of fuss. Although developed
within the coin industry, it has obvious potential in many engineering fields and is
flexible enough to be expanded indefinitely.

A significant advantage of using RS232 as the base format is that the protocol can
easily take place between remote sites on existing telephone lines with the addition of
a modem at each end. With the introduction of single-chip modem technology, more
and more applications are benefiting from remote programming capability. The ccTalk
language is the same no matter what the distance between host controller and slave
device. Some loop delays may be longer but that can easily be allowed for when
writing the software. The most talked about areas in coin handling are the remote
programming of new coin or bill sets and the remote FLASH upgrading of firmware.

ccTalk can be thought of as achieving the optimal balance between simplicity
and security.

2.2.1 Can I use it over USB ?

The ccTalk protocol is now officially supported on USB through 3rd party bridge
chips. This provides a quick entry point to those looking to leverage the speed and
security benefits of USB over an unbalanced, multi-drop cable. The protocol is called
‘ccTalk over USB’ and more details are provided in chapter 5 of part 4. Note that you
do not have to write any device drivers as these are provided licence-free from the

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 10 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

bridge chip manufacturers and the application layer interfaces to a virtual COM port
rather than a physical COM port. The ccTalk packet formation is identical over USB –
the only distinguishing feature may be an enhanced baud rate and the fact that
peripherals are physically isolated through hubs.

2.2.2 Is it a Multi-Master Protocol ?

A multi-master protocol is one which allows more than one device on the bus to be
the master, i.e. to initiate a transfer of data. This basically means that any of the slave
devices could have a chat with each other. It is a clear intention of ccTalk not to
support multi-master mode. In the money industry today this is seen as the preferred
option - the host machine has total control of the bus and any messaging must be
initiated from and conducted by, the host machine. The extra complexity of multi-
mastering is not justified and it also creates some security loop-holes with an external
data terminal being able to access a peripheral transparently.

There is a discussion of the implications of using ccTalk in a multi-master mode in
Appendix 5.

2.3 What are its Capabilities and Features ?

ccTalk has a byte-oriented message structure rather than a bit-field message structure
which means that most logical limits of the software are 255 or nearly 255. This
provides plenty of scope for most control networks. Although byte structures take up
slightly more memory, they are usually much easier to implement and debug on 8-bit
micro-controllers.

The logical addressing of ccTalk allows up to 254 slave devices to be connected to a
single host controller. The addresses of the slave devices do not necessarily determine
the equipment type - it is perfectly possible to have 3 identical coin hoppers attached
to the network with different logical addresses.

An 8-bit data structure is used throughout the protocol - in RS232 parlance there is no
requirement for a 9th address or wake-up bit. This simplifies a lot of communication
software - particularly for Microsoft Windows software running on PC’s. Control of
the 9th bit usually involves non-standard manipulation of the parity bit.

Rather than have a few commands which return large packets of data (an excess of 30
bytes is common in some protocols), the protocol encompasses a much larger number
of smaller and more efficient commands. For instance, if you request a device serial
number then that is exactly what you get - you do not have to wade through packets of
build numbers, version numbers and null fields until the data you are interested in
finally arrives. Our experience at Money Controls tells us that customers have widely
differing requirements and this approach is best - let them pick and choose from an
extensive command list. Managing a large command list is a routine task for most
software engineers today.

Variable message lengths are supported. This allows a convenient way of returning
ASCII strings back to the host controller. An example of where this is useful is when

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 11 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

the host controller seeks the identity of an attached peripheral device. This may be a
request for the manufacturer name, equipment category or product code. Upper and
lower case strings are supported.

Security has always been very important in the protocol. There is now an optional
encryption layer and before that there was a mechanism to allow certain commands to
be PIN number protected.

2.4 Is it Difficult to Implement ?

ccTalk is designed to run efficiently on low cost 8-bit micro-controllers with very
limited amounts of RAM and ROM. Even so, there is no reason why a successful 4-bit
microcontroller version could not be implemented. The software overhead required to
support this serial protocol on a product is very small (typically < 2K of code for a
basic command set and limited error handling).

To support this protocol on a 8-bit microcontroller typically requires :

 1K to 3K of ROM
 30 bytes to 200 bytes of RAM
 1 x UART - though it can be done in software subject to some timing constraints
 1 x 16-bit timer

Some kind of non-volatile memory such as EEPROM is useful for the storage of
configurable parameters.

Money Controls has written full ccTalk modules for the Motorola 68HC05, Hitachi
H8 and the Mitsubishi M16C/62 families. Work is now being done on a Philips
ARM7.

It is possible to implement a cut-down version of the software on a simple PIC
processor such as the PIC16C55. This tiny device has...

 512 bytes of ROM
 24 bytes of RAM
 Simple 8-bit timer
 No interrupts, no UART

The serial communication software may be interrupt-driven or polled. At 9600 baud,
each byte transmitted or received takes 1.04ms. Therefore, a typical microcontroller
application may be written with a poll of the serial port every 1ms. This will guarantee
that no receive data is ever missed and is slow enough to ensure the main application
is not compromised. However, for most applications an interrupt-driven serial port is
the best choice. Both approaches are compatible with ccTalk.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 12 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

2.5 Are there any Royalties to Pay or Licences to Obtain ?

No, because ccTalk is an open standard. The word 'ccTalk' has been registered as a
European trademark and it may be used to designate conformance to this protocol on
product labels and in manuals. No other use of this trademark is acceptable. We prefer
other manufacturers to refer to ccTalk in their literature as a recognition of the
trademark.

Standards are currently controlled by Money Controls and all original specifications
are produced here. Comments and suggestions are welcomed from interested parties
and we will try to release future versions of the protocol which meet as many new
requirements as possible. If you are interested in registering your interest in ccTalk
and wish to be kept up to date with the standard then please contact Money Controls.

2.6 A Quick Example of a ccTalk Message

Here is a typical ccTalk exchange for a host controller requesting the serial number of
an attached peripheral.

Host sends 5 bytes : [2] [0] [1] [242] [11]
Peripheral returns 8 bytes : [1] [3] [2] [0] [78] [97] [188] [143]

Serial number = 12,345,678 (= 78 + 97 * 256 + 188 * 65536)

A total exchange of 13 bytes produces the serial number - no other bus traffic is
necessary.

2.7 Comparison with other Serial Control Protocols

The table below shows how ccTalk compares with some other control protocols…

Protocol Architecture Speed Checksum Format Application
ccTalk Bi-directional

data line
9600 8-bit * 1,8,1

no parity
AWP

HI2 Bi-directional
data + control

9600 8-bit 1,8,1
no parity

Vending
& AWP

MDB TX + RX 9600 8-bit 1,8,1,1
address bit

Vending

BACTA
Dataport

TX + RX 1200
or 9600

8-bit 1,8,1,1
odd parity

AWP

CAN CANL +
CANH

1M 16-bit CRC - Automotive

USB Hubs !
D+ D-

1.5M
or 12M

5-bit CRC - PC
Peripherals

USB2 Hubs !
D+ D-

480M - - Video

Bluetooth RF wireless 720K - - Consumer

* Optional 16-bit CRC checksum

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 13 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

3. Serial Protocol - Timing

The timing of the serial data bits conforms to the original RS232 industry standard for
low data rate NRZ asynchronous communication. RS232 has various parameters and
these are configured in the standard version of the protocol as follows :

9600 baud, 1 start bit, 8 data bits, no parity bit, 1 stop bit

RS232 handshaking signals (RTS, CTS, DTR, DCD, DSR) are not supported. This is
a small data packet control protocol and data overruns are not likely to occur.
There are 10 bits needed for each transmitted byte - 8 data bits + 1 start bit + 1 stop
bit. No parity bit is used. Error detection is achieved through a packet checksum.

At 9600 baud, each byte takes 1.042 ms.
At 4800 baud, each byte takes 2.083 ms - low speed option

3.1 Baud Rate

The baud rate of 9600 was chosen as the best compromise between speed and cost.
Higher baud rates require more powerful processors with faster clocks and larger
power budgets. 9600 baud is also the most common speed for control network
protocols in this industry.

However, there is an option on ccTalk to run at 4800 baud on products where the
power budget is the overriding consideration. Money Controls has manufactured a low
power coin acceptor for a line-powered telephone which operates at 4800 baud.

Moves are now being made to operate ccTalk over a USB virtual COM port at orders
of magnitude faster i.e. 1Mbps and beyond. This has become necessary with the
requirement to upload product firmware into flash memory in less than 30 seconds. In
one sense ccTalk operates independently of baud rate and the throughput can be
increased as the physical layer technology evolves into cost-effective hardware.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 14 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

4. Serial Protocol - Voltage Levels

A level-shifted version of RS232 is used for convenience and to reduce cost. This
means negative voltages with respect to the ground rail are not required.

On the serial connector, the idle state = +5V (nominal) and the active state = 0V
(nominal).

Mark state (idle) +5V nominal Range 3.5V to 5.0V
Space state (active) 0V nominal Range 0.0V to 1.0V

The ccTalk interface should see a voltage below 1.0V as an active state and a voltage
above 3.5V as an idle state. Voltages in between are indeterminate.

Some older ccTalk products had the data line weakly pulled up to +Vs which could be
anywhere from +12V or +24V depending on the product power supply. The
convention now is to have a +5V pull-up. Which option is used should be clearly
documented with the product.

The allowable voltage levels for each state are determined by the interface electronics
and these may vary from application to application. The recommended way of driving
the ccTalk data line is through an open-collector transistor.

The rise and fall time at 9600 baud should be less than 10us.

Refer to Circuits 1, 2, 3 & 4.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 15 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

4.1 Oscilloscope Plots

The top trace shows the ‘Read buffered credit or error codes’ command sent to a coin acceptor. The TX
part is from the host controller to the peripheral and the RX is the reply from the peripheral. The bottom
trace shows a single ccTalk packet for the ‘Request serial number’ command with the symbols decoded.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 16 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

5. The Serial Data Line

The transmit and receive messages take place on a single bi-directional serial DATA
line. There is another 0V or COMMON line.

The recommended ccTalk interface is an open-collector NPN transistor driver on the
DATA line with a pull-up resistor at the host end of the link. The value of the pull-up
resistor will depend on the current-sinking ability of the communicating devices, the
degree of noise immunity required and the maximum number of peripherals which can
be attached to the bus. The ability to sink more current will result in better noise
immunity.

There are no special screening requirements for short interconnection distances (less
than 10m) since this is a low speed control network. Line drivers, opto isolators and
twisted-pair cables are only likely to be necessary in the presence of high electrical
noise. If ccTalk is to be used over long interconnection distances (within or between
rooms / departments) it is recommended that RS485 drivers are used rather than the
unbalanced open-collector interface.

5.1 RS485 Drivers

RS485 is a balanced transmission line system for use in noisy environments and over
longer interconnection distances. It utilises an extra line for the serial data (balanced
current) and requires a direction signal to control access to the multi-drop bus. PC-
based software often uses the RTS handshaking signal with special driver software to
toggle the direction status when sending out bytes.

A comparison of various electrical interfaces for serial communication is shown in the
table below.

Interface ccTalk RS232 RS485
Type unbalanced

multi-drop
point-to-point balanced

multi-drop
Data Lines 1 2 2
Direction Control No No Yes
Max. Peripherals
(Note )

16 1 32

Max. Distance 15m 15m 1200m
Max. Speed 19.2K 19.2K 10M
Mark (idle) +5V -5V to -15V +1.5V to +5V

(B > A)
Space (active) 0V +5V to +15V +1.5V to +5V

(A > B)

 : Electrical limitation rather than protocol limitation.

The standard ccTalk open-collector interface is much simpler to implement than
RS485 but less robust when it comes to long distance communication.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 17 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

6. Connector Details

The exact connector type is not a requirement of ccTalk compatibility but
obviously some kind of standardisation helps to reduce the number of cable converters
in circulation. Different applications have different requirements and the choice of
connector may be influenced by the product specification (e.g. robustness, corrosion
resistance, power requirements, cost etc.). It is felt at this stage in the evolution of the
ccTalk protocol that specifying the connector type is unrealistic and far too restrictive
but this situation is under constant review.

The following ccTalk connector types have been specified so far…

Type Pins Description Recommended for
new designs of…

1 4 standard interface, in-line connector
2 4 standard interface, Molex connector
3 10 low power interface
4 6 extended interface, in-line connector
5 10 AWP industry-standard interface 5 inch Coin Acceptors

and all Bill Validators
6 8 serial hopper interface, version 1
7 4 standard interface, JST connector 3.5 inch Coin Acceptors
8 10 serial hopper interface, version 2 Serial Compact Hoppers
9 12 universal hopper interface Serial Universal Hoppers

6.1 Type 1 (standard interface, in-line connector)

(1) +Vs
(2) <key>
(3) 0V
(4) /DATA

Recommended peripheral connector :
Molex 42375 Series 0.1inch pitch straight flat pin header
P/N 22-28-4043 (15 gold)

Mates with :
Molex 70066 Series single row crimp connector housing
P/N 50-57-9304
(Alternative : Methode 0.1inch IDC connector 1308-204-422)

Crimps :
Molex 70058 Series
P/N 16-02-0086 (15 gold)

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 18 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

6.2 Type 2 (standard interface, Molex connector)

(1) +Vs
(2) <reserved>
(3) 0V
(4) /DATA

Recommended peripheral connector :
Molex 3.00mm pitch Micro-Fit 3.0 Wire-to-Board Header (vertical mounting)
P/N 43045-0413 (15 gold)

Mates with :
Molex 3.00mm pitch Micro-Fit 3.0 Wire-to-Wire Receptacle
P/N 43025-0400

Crimps :
P/N 43030-0002 (15 gold)

Pin Polarity :

View of socket from front

6.3 Type 3 (low power interface)

(1) /DATA
(2) 0V (shield)
(3) /REQUEST POLL
(4) 0V (shield)
(5) /RESET
(6) <key>
(7) /INHIBIT ALL
(8) 0V (logic)
(9) +5V
(10) 0V (solenoid)

Recommended peripheral connector :
Molex 8624 Series 0.1inch dual row straight pin breakaway header
P/N 10-89-1101 (15 gold)

Mechanical keying should be provided by the surrounding cover.

(Alternative :
Molex 70246 Series dual row straight pin low profile shrouded header 70246-1021)

4 3

2 1

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 19 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

Mates with :
Molex 40312 Series MX50 ribbon cable connector system
P/N 15-29-9710 (15 gold, centre polarisation, strain relief)

Pin Polarity :

View of connector from front

6.4 Type 4 (extended interface, in-line connector)

(1) +Vs
(2) <key>
(3) 0V
(4) /DATA
(5) /RESET
(6) /REQUEST POLL

Recommended peripheral connector :
See type 1 connector

6.5 Type 5 (AWP industry-standard interface)

In the UK, this connector is specified by BACTA for use in all AWP machines with
serial coin acceptors.

This type of connector supports both Mars HI2 (Host Intelligent Interface from
Mars Electronics International) and Money Controls ccTalk protocols.

(1) /DATA  ccTalk interface
(2) DATA 0V internally connected to 0V
(3) /BUSY not used in ccTalk (not connected)
(4) BUSY 0V internally connected to 0V
(5) /RESET optional use in ccTalk
(6) /PF not used in ccTalk (not connected)
(7) +12V  ccTalk interface
(8) 0V  ccTalk interface
(9) /SERIAL MODE  ccTalk interface, connect to 0V

for serial operation
(10) +12V alt. not used in ccTalk (not connected)

ccTalk does not require as many signals as HI2.

For coin acceptors which have both serial and parallel interfaces, the /SERIAL MODE
signal is used to indicate serial operation rather than parallel operation.

9 7

10 8

5 3 1

6 4 2

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 20 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

To see which serial protocols are supported by the coin acceptor, it is suggested that a
test message is sent out in one of the protocols and the reply message (if any)
checked. In ccTalk, a suitable first message is the ‘Simple poll’ command.

See connector Type 3 for more details.

6.6 Type 6 (serial hopper interface, version 1)

(1) Address select 3
(2) Address select 2
(3) Address select 1
(4) +Vs
(5) +Vs
(6) 0V
(7) 0V
(8) /DATA

Recommended peripheral connector :
AMP 640456-8 or equivalent e.g. CviLux CI3108-P1V00 or Molex type 6410
(2.54mm pitch)

Mates with :
AMP 640441-8

Pin Polarity :

6.7 Type 7 (standard interface, JST connector)

(1) +Vs
(2) -
(3) 0V
(4) /DATA

Recommended peripheral connector :
JST B 4B-XH-A

Mates with :
JST XHP-4

Crimps
SXH-001T-P0.6

View of connector from front

Pin 1

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 21 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

Pin Polarity :

6.8 Type 8 (serial hopper interface, version 2)

(1) Address select 3
(2) Address select 2
(3) Address select 1
(4) +Vs
(5) +Vs
(6) 0V
(7) 0V
(8) /DATA
(9) -
(10) /RESET

See connector Type 6 for more details.
AMP 1-640456-0 or equivalent e.g. CviLux CI3110-P1V00.

Note that on the Money Controls Mk2 serial hopper range, pin 1 is on the left
with the key at the top, rather than on the right.

6.9 Type 9 (universal hopper interface)

(1) 0V
(2) -
(3) -
(4) Address select 1
(5) /DATA
(6) -
(7) -
(8) Address select 2
(9) +Vs
(10) -
(11) -
(12) Address select 3

Recommended peripheral connector :
Cinch R76-77848 12-way male

View of connector from front

Pin 1

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 22 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

Pin Polarity :

View of connector from front

6.10 Connector Wiring Colours

The following wiring colours have been adopted on some test looms to help
debugging.

Signal Colour
+Vs Red
0V Black

/DATA Yellow
/RESET Green

Colour coding is not a requirement of the specification.

1

5

4

9

12
8

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 23 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

7. Message Structure

The protocol supports optional CRC checksums and encryption. The differences are
shown here.

7.1 Standard Message Packets, Simple checksum

For a payload of N data bytes…

[Destination Address]
[No. of Data Bytes]
[Source Address]
[Header]
[Data 1]
...
[Data N]
[Checksum]

Each communication sequence (a command or request for information) consists of 2
message packets structured in the above manner. The first will go from the master
device to the slave device and then a reply will be sent from the slave device to the
master device. The reply packet could be anything from a simple acknowledge
message to a stream of data.

Note that the acknowledge message in ccTalk conforms to the above structure in the
same way all other messages do. Some protocols use a single byte acknowledge - this
is not viewed as secure.

The structure does not alter according to the direction of the message packet. The
serial protocol structure does not care who originates the message and who responds
to it.

For a simple command or request with no data bytes…

[Destination Address]
[0]
[Source Address]
[Header]
[Checksum]

The acknowledge message is produced by setting the header to zero and having no
data bytes…

[Destination Address]
[0]
[Source Address]
[0]
[Checksum]

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 24 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

7.2 Standard Message Packet, CRC checksum

[Destination Address]
[No. of Data Bytes]
[CRC-16 LSB]
[Header]
[Data 1]
...
[Data N]
[CRC-16 MSB]

When 16-bit CRC checksums are used, the source address field is replaced by the
lower portion of the checksum. In this case, all slave devices automatically reply to
address 1 (the default host address).

7.3 Encrypted Message Packet, CRC checksum

[Destination Address]
[No. of Data Bytes]
[Encrypted 1]
…
[Encrypted N]

When encryption is used on top of the CRC checksum, all bytes are encrypted from
the first checksum byte onwards. The only unaffected bytes are the destination address
and length byte which need to remain as they are to allow standard and secure
peripherals to be mixed on the same bus. An encrypted message will be ignored by all
peripherals with no address match.

7.4 Protocol Layering

In terms of how the different protocol layers are implemented in ccTalk when sending
message data…

Application Layer

CRC Layer

Encryption Layer

Data Link Layer

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 25 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

To send a message to a bill validator, we take the high level command consisting of a
destination address, length field, command header and data bytes. A 16-bit CRC
checksum is calculated and added into the structure. This is then encrypted and passed
to the UART which adds in start and stop bits for transmission. The message is then
sent to the peripheral device which performs the operation in reverse.

7.5 Destination Address

Range 0 to 255 (254 slave addresses)

0 : broadcast message (see next heading)
1 : the default host or master address
2 : the usual slave address for non multi-drop networks
2 to 255 : available slave addresses for multi-drop networks

7.5.1 The Broadcast Message

A destination address of '0' is a special case whereby all attached devices respond. In
this case the returned source address is '0' (when simple checksums are used)
indicating a reply by all.

This command should be used with caution in a multi-drop network as all the
attached devices will send replies that collide with each other - although this can be
allowed for in the host software by ignoring bus activity for a fixed time after the
command is sent. The broadcast address is best reserved for a couple of the MDCES
commands.

The reason that data is returned on a broadcast address is one of huge convenience
when debugging software. A typical slave device may have a number of address
selection methods, some of which write values into EEPROM, and it may not be
obvious which one is active at any one time. Assuming only this device is connected
to the serial bus then the broadcast message can be used to guarantee an address
match.

7.5.1.1 Warning : Broadcast Message with Encryption

Special care has to be taken when using the broadcast address with multiple encrypted
devices and mixed encrypted/unencrypted devices. The ccTalk message packet does
not contain a flag to say whether the packet is encrypted or not – if it is sent to a
matching address then the peripheral will decode the message according to its own
rules. An encrypted message sent by the host on the broadcast address will have a
single value of encryption key which may not work on all attached devices – those
peripherals which receive an incorrect key will almost certainly fail the CRC check
and not reply. An encrypted message to an unencrypted peripheral may be interpreted
as a different header if the simple 8-bit checksum is correct by chance. An
unencrypted message to an encrypted peripheral will result in the peripheral
decrypting a plain text message which will almost certainly fail the CRC check. To
avoid uncertainties like this it is best to avoid the use of the broadcast address in the
situations described above. This is easy to do when the peripheral addresses are pre-
determined as most networks are.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 26 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

An example of how it goes wrong…

If we send a simple poll command (header 254) to the broadcast address using an
encryption key of ‘124027’ then the actual data sent is…
TX = 000 000 137 145 230
An unencrypted peripheral will calculate a simple 8-bit checksum as 0 + 0 + 137 +
145 + 230 = 512 = 0, correct ! So the peripheral seems a valid broadcast command
with header 145 = ‘Request currency revision’, not ‘Simple poll’.
It may reply with something like…
RX = 137 003 000 000 048 048 056 220
This is confusing because although it has replied correctly from the broadcast address
it is replying to address 137 rather than 1, the host address ! And it replies with far
more data than a simple poll. If there is another peripheral on the bus with address 137
then the confusion could spread and other commands could be executed by mistake.

7.6 No. of Data Bytes

Range 0 to 252.

This indicates the number of data bytes in the message, not the total number of bytes
in the message packet. A value of '0' means there are no data bytes in the message and
the total length of the message packet will be 5 bytes - the minimum allowed. A value
of 252 means that another 255 bytes are to follow, 252 of which are data.

Although it would be theoretically possible to have 255 data bytes, implementation is
helped in small devices such as PIC microcontrollers by having no more than 255
bytes following the ‘No. of Data bytes’. Allowing for the source address, header and
checksum, this gives the value 252. The same reasoning applies to the encryption
layer; the maximum encrypted packet size is 255.

7.6.1 Long Transfers

In some circumstances there will be a requirement to transfer more than 252 bytes of
data. This is achieved by splitting the data into blocks, 1 for each message, and issuing
a sequence of commands. The block size may be the maximum of 252 bytes or it may
be more convenient to transfer blocks of 128 bytes. A nice power of 2 is usually
preferred by software engineers.

This approach is good from the data integrity point of view as the checksum is better
able to detect errors when the messages are shorter.

A good example of block transfer is the 'Read data block' command and the 'Write
data block' command. Also, see Appendix 14.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 27 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

7.7 Source Address

Range 1 to 255.

The default source address for the host machine is 1 and there should be no reason to
use a different value.

When a slave device replies to the host, the source address is set to that of the slave.

To clarify with an example…

Message from host to slave
Destination = 3, Source = 1

Reply from slave to host
Destination = 1, Source = 3

If CRC checksums are used, there is no source address…

Message from host to slave
Destination = 3

Reply from slave to host
Destination = 1 (assumed to be the case)

7.8 Header

Range 0 to 255.

Header bytes have been defined to cover a broad range of activities in the money
industry.

There is now comprehensive support for…
 Coin Acceptors
 Bill Validators
 Serial Hoppers

The header value of '0' indicates a response packet. A slave device should not be
sent a null header by the master, it should only return one.

7.9 Data

Range 0 to 255.

No restrictions on use. The data may have any format such as binary, BCD and ASCII.

Refer to each specific command for its associated data format.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 28 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

7.10 Simple Checksum

This is a simple zero checksum such that the 8-bit addition (modulo 256) of all the
bytes in the message from the start to the checksum itself is zero. If a message is
received and the addition of all the bytes is non-zero then an error has occurred. See
'Action on Error' heading.

For example, the message [1] [0] [2] [0] would be followed by the
checksum [253] because 1 + 0 + 2 + 0 + 253 = 256 = 0.

If a slave device receives a message intended for another device (destination address
does not match) then it should ignore the checksum.

7.11 CRC Checksum

The CRC checksum used in ccTalk is the 16-bit CRC-CCITT checksum based on a
polynomial of x^16+x^12+x^5+1 and an initial crc register of 0x0000.

Refer to Appendix 9 for more details.

7.11.1 A Little Checksum Theory

Most serial protocols in the coin / vending industry are protected with either simple 8-
bit addition checksums or 16-bit checksums. The algorithms for 16-bit checksums
vary from addition to cyclic redundancy codes such as CRC-CCITT and CRC-16 with
their mathematical basis in polynomial division (the idea being that division is far
more sensitive to bit errors than addition). The processing power required for CRC
calculations is greater than addition checksums, but where code space is plentiful, a
512 byte look-up table can improve performance to near that of addition.

The abilities of the various checksum algorithms to detect errors are summarised
below :

8-bit checksum
Can detect all single-bit errors.
Can detect most double-bit errors.

This method is not recommended for physical links noisy enough to give a significant
probability of more than one corrupted bit per message.

16-bit checksum (addition)
Much better than the 8-bit checksum but still not capable of detecting all double-bit
errors.

CRC-CCITT / CRC-16
Can detect all single-bit errors.
Can detect all double-bit errors.
Can detect all odd numbers of bit errors

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 29 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

All methods are good at detecting burst errors - blocks of zeros or ones.
The high-level structure of the ccTalk protocol means that for most situations an 8-bit
checksum is perfectly adequate. There is some redundancy in the returned message
packets which helps error detection. For instance, errors in the destination and source
addresses are easy to spot and errors in the number of data bytes can result in a
timeout or overrun.

7.12 Anatomy of an Example Message Sequence

Let’s suppose the host machine wishes to find the serial number of an attached slave
device. It therefore sends the ‘Request serial number’ command.

Host sends…
[2] - this is to slave address 2
[0] - there are no additional data bytes to send
[1] - this is from host address 1
[242] - header is 242 (Request serial number)
[11] - checksum, 2 + 0 + 1 + 242 + 11 = 256 = 0 (modulo 256)

Host receives…
[1] - this is to host address 1
[3] - there are 3 data bytes in the reply
[2] - this is from slave address 2
[0] - header is 0, i.e. it’s a reply !
[78] - data byte 1 = 78
[97] - data byte 2 = 97
[188] - data byte 3 = 188
[143] - checksum, 1 + 3 + 2 + 0 + 78 + 97 + 188 + 143 = 512 = 0 (modulo 256)

Interpreting the return data,
serial number = 78 + 256 * 97 + 65536 * 188 = 12,345,678 in decimal.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 30 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

8. The Acknowledge Message

If a message has a null header (which is the case for a reply packet) and no data bytes
then this is considered a simple slave acknowledge message.

An ACK = [Destination Address]
[0]
[Source Address]
[0]
[Checksum]

8.1 The NAK Message

The NAK message has restricted use in a ccTalk multi-drop network because an
incorrectly received message cannot be assumed to have a correct source or
destination address. Replying to non-existent or incorrectly addressed hosts merely
clogs up valuable bandwidth. However, if an operation carried out by the slave device
(after receiving an error-free command) fails, then a NAK message may be
appropriate.

The way most ccTalk commands work is to include status information regarding the
success of the command in the returned data as this can be tailored very specifically to
the action performed and is of more use to a host controller than a generic ‘NAK’
message.

The NAK message is defined as :
[Destination Address]
[0]
[Source Address]
[5]
[Checksum]

Note that in this case the return header is non-zero.
See ccTalk header 167, ‘Dispense hopper coins’, for a classic NAK response.

8.2 The BUSY Message

The busy message can be used by a slave device to indicate that it is busy and can not
respond to, for example, a request for information. It is then up to the host software to
retry after a suitable interval. This response is provided for completeness only and is
not currently used in any Money Controls products.

[Destination Address]
[0]
[Source Address]
[6]
[Checksum]

Note that in this case the return header is non-zero.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 31 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

9. Commands that return ASCII Strings

By convention, ASCII strings are returned in the same order as they print or appear on
screen. For instance, "Hello" is returned as...

['H']
['e']
['l']
['l']
['o']

The length of the string can be determined from the [No. of Data Bytes] byte sent as
part of the message packet. There is no null terminator as in a 'C' language character
string.

No. of Data Bytes = length of string

The maximum string length is 252 characters in line with the maximum number of
data bytes in a packet.

9.1 Fixed length Strings

Some commands return fixed length strings for convenience. Where the stored string
is less than the fixed string width then the ccTalk convention is to right pad the string
with either…

a) spaces (ASCII 32)

b) dots (ASCII 46)

10. Implementation Details

A bi-directional serial data line can be tackled by the design engineer in a variety of
ways. A simple microcontroller implementation may use a single bi-directional I/O
port and switch between an output for transmission and an input for reception. ccTalk
is a half-duplex protocol and so this approach should not present any problems. The
slave device will not return any data until the entire transmit message is complete.

A microcontroller which has a built-in UART may have separate transmit and receive
data lines. These can be combined in the interface electronics. The software for a
UART implementation will have to deal with transmitted data being immediately
received back again (local loop-back). This can be tackled in software by using a
receive enable / disable flag or by receiving the transmit message in full and then
ignoring it.

Since the ccTalk protocol does not use a wake-up bit which is a key feature of other
serial protocols, all receive messages should be processed. This is a quick operation in
a slave device and it should not affect the performance of the main application code.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 32 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

A brief outline of the receive algorithm is :

Get destination address

Get no. of data bytes

If { address match }
receive and store rest of message (count incoming bytes)

validate checksum
< execute command >

Else
receive rest of message (count incoming bytes)

End If

Receive timeout error : < clear receive counters >

11. Timing Requirements

The timing requirements of ccTalk are not very critical but here are some guidelines.

11.1 Between bytes

When receiving bytes within a message packet, the communication software should
wait up to 50ms for another byte if it is expected. If a timeout condition occurs, the
software should reset all communication variables and be ready to receive the next
message. No other action should be taken.

The ability to transparently time-out and respond to the next valid command is a
key feature of the robustness of ccTalk and must be adhered to. Serial ‘garbage’
must not be left hanging around in the receive buffer.

When transmitting a ccTalk data packet, serial communication software should ensure
the smallest possible inter-byte delay. At 9600 baud, each byte takes 1.04ms and so
the inter-byte delay should ideally be less than 2ms to maximise the bus message
bandwidth, and certainly no greater than 10ms. This is particularly important in a
multi-drop application where a number of different peripherals have to be serviced
within a set time. A slow slave device will compromise the integrity of the entire bus.

11.2 Between command and reply

The delay between the issuing of a command and the reply being received is command
and application specific. Some commands return data immediately (within 10ms)
while others wait for some action to be performed first. For instance, a command that
pulses a solenoid will only send an ACK message when the solenoid has finished
activating. This could be a couple of seconds later. Host software should be written to
take account of these variable delays and time-out according to the command sent. To
test whether a slave device is operational, choose a command with a fast response
time - the 'Simple poll' command is an ideal choice. Well-written slave devices should
respond as soon as possible to minimise network latency.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 33 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

12. Action on Error

A host device will transmit a message to a slave device. If the slave device detects an
error condition such as a bad checksum or missing data (receive timeout) then no
further action is taken and the receive buffer is cleared. The host device, on receiving
no return message, has the option of re-sending the command. Likewise, if the host
does not receive the return message correctly, it has the option of re-sending the
command. It is up to the host device whether re-sending the command occurs
immediately or after a fixed or random delay.

12.1 Retransmission

Some protocols have retransmission capability built into the transport layer (see
Appendix 2). The philosophy of ccTalk is to keep the protocol implementation as
simple as possible by having retransmission performed at a higher level. Most
commands can have a very simple retransmission algorithm - if the checksum is
wrong then the command is re-sent. Factors such as how many times retransmission is
attempted before giving up can be varied to suit the application rather than being
rigidly enforced by the protocol.

Commands such as paying out coins from a hopper need a more secure algorithm and
this has been taken care of in the high level command structure.

Retransmission is implemented in ccTalk at a high level and varies according to
the application requirements. It is strongly recommended that all host
implementations employ some kind of retransmission policy e.g. retry each
command 3 times before failing. This improves system robustness.

13. Unrecognised Headers

If a slave device does not recognise (i.e. support) a particular header then no
information is returned to the host device and no action is taken.

For example, if a coin acceptor is asked to pay out coins with the ‘Dispense hopper
coins’ command, then this is clearly an impossible task and there will be no reply.

14. Practical Limitations in Very Low Cost Slave Devices

A typical low cost slave device has restrictions on ROM space, RAM space and
processing capability. Therefore, the following limitations may apply on the slave
device.

 The receive buffer is relatively small (anything from 1 to 10 bytes) and so long
messages from the host device cannot be received and stored. The slave will
usually store data until the receive buffer is full.

 Although there is support in the protocol for variable length messages, the slave
device does not have the power or flexibility to deal with them. The slave will
assume a particular header has a certain number of data bytes.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 34 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

15. Command Set

15.1 Command Expansion

One major feature of ccTalk is limitless command expansion and this part of the
protocol has received a lot of attention. There are two methods by which this can be
achieved.

15.1.1 Expansion Headers

Headers 100, 101, 102 and 103 are used to indicate another set of headers within the
message data. Although this lengthens the expansion messages by 1 byte, it
immediately gives access to 1024 extra commands. Money Controls will use this
approach for its future range of products.

As an example, suppose we add a new command ‘Request ASCII serial number’
which returns a serial number in ASCII rather than binary. We will define this new
command as EH 100:255 (expansion header 100, sub-header 255).

Host sends…
[2] - destination address
[1] - 1 data byte = 1 x sub-header
[1] - source address
[100] - expansion header 100
[255] - sub-header 255 (e.g. Request ASCII serial number)
[153] - checksum, 2 + 1 + 1 + 100 + 255 + 153 = 512 = 0

Host receives…
[1] - destination address
[8] - 8 data bytes
[2] - source address
[0] - reply header
[49] - ‘1’
[50] - ‘2’
[51] - ‘3’
[52] - ‘4’
[53] - ‘5’
[54] - ‘6’
[55] - ‘7’
[56] - ‘8’
[81] - checksum, 1 + 8 + 2 +… = 512 = 0

15.1.2 Context Switching

Headers 99 down to 20 are application specific. The way this works is that, for
example, header 99 performs a number of different tasks depending on the type of
peripheral it is. So the host machine must identify the peripheral type first (is it a coin
acceptor, bill validator, payout…?) and then use the appropriate header number. In
this way, we can have another 80 commands on each new type of device.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 35 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

Context switching is the recommended way for other manufacturers to introduce
additional features outside the official command set.

Details of application specific commands can be found in the product manual rather
than the generic specification. Contact the peripheral manufacturer for more details.

Note that command header 255 is the ‘Factory set-up and test’ command. This
command can be used by any manufacturer to implement a range of proprietary
functions.

15.2 Release Number

The ccTalk release number is a value 1 to 255 indicating the library support for ccTalk
serial commands. In other words, the number tells the host software which command
headers are replied to.

It is envisaged that the release number will be used with respect to a particular model
of peripheral device rather than globally. Therefore, if a particular model is upgraded
by adding support for a few extra serial commands, the release number will be
incremented such that the host machine can use both old and new versions of the
product. It is a design aim that all future releases are backwardly compatible such that
responses to existing commands are unchanged.

Every product will be provided with a table showing which command headers are
supported against various release numbers. Most products will only have one
release number i.e. 1.

Note : the complex definition of implementation level as described in version 2.0 of
the specification has been abandoned.

To read the release number electronically, refer to the ‘Request comms revision’
command. The first byte returned is the release number.

An alternative method for identifying ccTalk command changes in a particular
product is to look at the software revision string returned by the ‘Request
software revision’ command.

16. Implementing ccTalk on a New Product

Although originally designed for use in the coin industry, there is no reason why
ccTalk cannot be used in other areas. Extensions are now in place for payouts and bill
validators. Choose existing header numbers if possible to implement the function
required. For instance, a lot of the function headers have generic capability such as
'Read input lines', 'Test output lines', 'Test solenoids' and 'Modify master inhibit
status'. The exact implementation of the command parameters can be documented
along with the product.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 36 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

If there are some functions which are totally unlike anything described in the header
definition table then a new header code will be needed. Special header numbers are
reserved for this purpose.

17. Implementation Standards

For details of which connector to use, refer to the ‘Connector Details’ section. The
table shown represents the state of play.

For which commands should be implemented on each peripheral type, refer to the
master cross-reference chart in Appendix 1 - ccTalk Command Cross Reference and
Appendix 13 - Minimum Acceptable Implementations.

For recommended default addresses refer to Table 1.

18. Coin Acceptors - Credit Polling Algorithm

In a typical coin handling application with a single coin acceptor, only 1 command
needs to be sent regularly by the host machine. This is the ‘Read buffered credit or
error codes’ command.

This is a quick guide to the basic software needed for ccTalk polling…

Initialisation
Issue ‘Read buffered credit or error codes’ and store event counter

Continuous Host Polling
Issue ‘Read buffered credit or error codes’ and check event counter
If checksum bad or general comms error then retry

If events = 0 and last events > 0 then error condition (power fail and possible lost
credits)
If delta(events) = 0 then no new credits
If delta(events) >= 1 and delta(events) <= 5 then new credit information
If delta(events) > 5 then error condition (1 or more lost credits)

Each poll returns between 0 and 5 new credits or other events.

18.1 The Credit Poll Watchdog

A new feature of ccTalk serial devices is the addition of a ‘credit poll watchdog’.
Credit polling involves sending the ‘Read buffered credit or error codes’ command to
coin acceptors or the ‘Read buffered bill events’ command to bill validators. If for
some reason the host communication link dies, it is essential that coins or bills are not
swallowed (physically accepted but no credit given). This can be prevented by the
peripheral having a watchdog timer triggered off the serial poll command. If the
polling stops, the peripheral goes into an inhibit state. Once polling resumes, the
inhibit state is lifted.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 37 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

19. Writing Generic Host Software Applications

It is possible with care to write generic host software to deal with any standard ccTalk
peripheral connected to it. Doing this obviously requires a lot more effort than writing
a host application for one specific peripheral type. A core set of ccTalk commands
should be run through first to discover what type of peripheral it is.

Command Return Data Type Information Gained
Request equipment category id ASCII What sort of peripheral is it ?
Request product code ASCII What model is it ?
Request build code ASCII What build is it ?
Request manufacturer id ASCII Who manufactures it ?

Armed with this information the host application can consult a look-up table of
commands and use the appropriate ones for the peripheral concerned. Clearly, the
more standardisation there is in the industry over the data format for different
commands, the less complex the look-up table needs to be.

19.1 Designing a ccTalk API

It should be a straight-forward task in most languages to write a ccTalk library which
hides the messy process of actually sending and receiving bytes through the UART.
Once this is written, a simple API can make the task of adding extra ccTalk
commands a painless operation.

A simple example is shown below. We define global variables or public members
which hold the destination and source addresses for host communication. This saves
having to pass them into the send function each time. To fire off a ccTalk command,
we pass the command header number and an array of parameters which vary
according to the command. The function can return a boolean to indicate a successful
outcome or if there wasn’t, a comms error in the status string e.g. ‘Error : Bad
checksum’. Some messages will return an ACK (no receive data) and others will
return an array of command-specific data.

Global Variables
destAddress = 2
srcAddress = 1

Functions
BOOL SendccTalkCommand(commandHeader, noParamBytes, paramBuffer[],
noRxDataBytes, rxDataBuffer[], commsStatus)

If TRUE then
ACK or rxDataBuffer contains returned data

If FALSE then
Error string in commsStatus

The entire ccTalk command set is covered by this simple interface (apart from a
couple of MDCES commands) and a single line of source code executes the complete
message transfer.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 38 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

Extra parameters can be added to allow the serial port to be selected, the baud rate to
be changed and the receive timeout period to be varied according to the command.
There may also be options to change the checksum method and to enable and disable
encryption.

20. Multi-Drop Considerations

The ccTalk 3-wire serial interface has been designed to allow a number of peripherals
to be joined together with the minimum of effort. There is no restriction on connection
topology - they can be linked in-line, in a ring or in a tree structure. This environment
is typically referred to as ‘multi-drop’ since each device is dropped off the bus.

A multi-drop environment is obviously a lot more complicated than a simple
interconnection between one master device and one slave device. For a single master,
multiple slave configuration, the major problem is address resolution. All slave
devices must have a unique address on the bus for the system to work properly.

The most obvious first step is to ensure that different peripheral devices have different
default addresses. Looking at Table 1 it can be seen that coin acceptors default to
address 2, hoppers to address 3, bill validators to 40 etc. A problem arises when more
than one peripheral is added of a particular type. For instance, it would not be unusual
in a vending machine to have 3 hoppers paying out change. As it would not be
practical for peripheral manufacturers to produce a range of build variants having
different default addresses, together with the problem of the units getting mixed up
when they look identical, it is preferable on these devices to have a means of external
address selection. This might be a DIP switch on the PCB or address selection via the
wiring harness on the connector. The wiring harness method is particularly convenient
for machine manufacturers as it means that a physical position within the machine will
always have the same address.

To support more advanced applications such as batch programming of coin acceptors,
ccTalk has command support for dynamic addressing. This basically means that
device addresses can be resolved and changed via software means alone (assuming
the device supports dynamic addressing). So we could plug 10 identical coin
acceptors all with address 2 into a PC and test each one individually.

To provide comprehensive multi-drop support we have the MDCES commands - see
the section below. Many multi-drop networks are determinate (addresses known) and
so these extra commands are not needed.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 39 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

20.1 Practical Limitations of Multi-Drop Networks

There is a common 0V line running between all peripheral devices - if this is a
problem due to differing ground potentials then special circuitry needs to be used - for
instance the use of opto isolators or threshold voltage comparators.

The maximum length of connection will depend on the degree of electrical noise (
radiated and conducted) in the system. We are operating at relatively low baud rates,
which makes matters better, but at low voltages, which makes matters worse. In its
simplest form, ccTalk is not designed to operate over more than 10 metres of
unscreened cable.

20.1.1 Maximum Number of Network Devices

The following restrictions apply when connecting lots of peripherals to the ccTalk
bus.

20.1.1.1 Logical Addressing

The protocol allows the logical connection of 254 devices.

20.1.1.2 Electrical Loading

Each device added to the bus places an electrical load on it. The extent of the loading
will be application dependent but taking a typical bus pull-up resistor of 10K to +5V,
if each device receiver sinks 10uA then a total of 20 devices would lower the bus
voltage by 2V. Any more drop than this would seriously compromise the noise
immunity.

20.1.1.3 Address Randomisation

This section only applies if devices are not initialised with unique addresses…

For the MDCES randomise command to have a good chance of not setting 2 devices
to the same address, it is suggested no more than 8 devices are connected to the bus.
The statistical chance of a clash occurring is about 1 in 10. In which case, the network
would have to be randomised again which delays the start-up sequence by a couple of
seconds. The chance of more than a 5s delay would be about 1 in 1000.

Refer to Appendix 8 if you are interested.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 40 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

20.2 MDCES - Multi-Drop Command Extension Set

The ccTalk MDCES (Multi-Drop Command Extension Set) gives additional
functionality to multi-drop applications. However, some MDCES commands by
necessity do not conform to the standard ccTalk message format.

In most situations it is possible to have device addresses configured before use so that
no address ambiguities arise. In a few situations, new devices will be plugged into the
network without prior knowledge. The host controller needs then to perform a
network scan to automatically determine new addresses and resolve address
ambiguities. It is in these circumstances the MDCES becomes useful. Note that the
current serial protocol does not support hot-plugging of peripherals - the host device
must be informed by other means of a change in network configuration.

The key problem of a multi-drop network is all like-addressed devices responding at
once. The response of 2 special commands has been limited to 1 byte to reduce the
collision complexities. These commands are the 'Address poll’ to determine attached
devices and the 'Address clash’ to determine if any devices have the same address.
The byte they return is delayed by a certain amount. The address poll command delays
the response by a time proportional to the address value. The address clash command
delays the response by a time proportional to a random value. After sending one of
these two commands, some or all of the following events could occur :

a) No collision. The returned bytes are completely separate.
b) Collision. The returned bytes overlap but are staggered in time i.e. the start bits are
non-synchronous. This can result in a framing error or 1 or more bytes with the wrong
value.
c) Unison. The returned bytes are in unison and are read as a single byte with no
errors. Although in theory 2 devices with the same address should respond identically
in time, variations in clock speeds, asynchronous internal timing and physical
propagation delays means this is unlikely to be the case.

Although the possibilities look complicated, intelligent host software making use of
the commands detailed below can sort the mess out very easily. Obviously there is no
problem for a pre-configured network with all address ambiguities resolved
beforehand.

Headers 253 and 252 are used to check that there are no address ambiguities.

The most important command of all is header 250 which can randomise a slave device
address. This can be done on a subset of slaves with the same destination address or
across the entire network (destination address = 0).

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 41 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

20.2.1 Address Poll, Header 253

The host issues this command with a zero destination address (the broadcast
address) so that all attached devices respond.

Transmitted data : <none>
Received message : {variable delay} <slave address byte>

This command is used to determine which devices are connected to the bus by
requesting that all attached devices return their address. To avoid collisions, only the
address byte is returned and it is returned at a time proportional to the address value.

Slave Response Algorithm

Disable rx port
Delay (4 * addr) ms
Send [addr]
Delay 1200 - (4 * addr) ms
Enable rx port

The algorithm produces an overall delay of 1200ms during which time the slave
receive port should be disabled to avoid picking up a ccTalk message packet
composed of seemingly random bytes.

If the host machine receives all bytes returned for about 1.5s after issuing this
command, it can determine the number and addresses of attached devices.

At 9600 baud, a theoretical bus consisting of 254 attached devices would return a
stream of 1ms address bytes spaced 3ms apart. The peripheral devices should maintain
an accuracy of 1.5ms at each address value to prevent unnecessary clashes when
devices are close together. Note that some ccTalk peripherals may have difficulty
maintaining that tolerance depending on task priorities and clock accuracy. Any
random timing variation can be alleviated by retrying the address poll 2 or 3 times
until a satisfactory address resolution is achieved.

Address byte

TX

RX
Address poll

t = 4 * address

t is measured from the end of the last TX stop bit to the beginning of the RX start bit

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 42 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

20.2.2 Address Clash, Header 252

The host issues this command with a specific destination address.

Transmitted data : <none>
Received message : {variable delay} <slave address byte>

This command is used to determine if one or more devices share the same address. To
avoid collisions, only the address byte is returned and it is returned at a time
proportional to a random value between 0 and 255.

Slave Response Algorithm

r = rand(256) // random value in the range 0 to 255
Disable rx port
Delay (4 * r) ms
Send [addr]
Delay 1200 - (4 * r) ms
Enable rx port

The algorithm produces an overall delay of 1200ms during which time the slave
receive port should be disabled to avoid picking up a ccTalk message packet
composed of seemingly random bytes.

If the host device receives all bytes returned for about 1.5s after issuing this command,
it can determine the number of attached devices sharing the same address.

There is of course the possibility that 2 randomised devices share the same address
and random number but the likelihood of this occurring in a small network is low
enough to ignore (1 in 254 * 256 = 1 in 65,024). An address clash is easy to pick up
later as comms errors would occur.

The random number can be generated by the microcontroller in a number of ways. If it
is timer based then there could be a correlation between power-up time and a random
number generated at any particular moment in time. Since networked devices could
easily share the same power bus, it may be preferable to store a pseudo random
number in EEPROM during the factory set-up process.

Address byte

TX

RX
Address clash

t = 4 * random

t is measured from the end of the last TX stop bit to the beginning of the RX start bit

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 43 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

20.2.3 Address Change, Header 251

Transmitted data : [address]
Received data : ACK

This command allows the addressed device to have its address changed for subsequent
commands. The host sends 1 data byte, the value of which is the new address. It is a
good idea to make sure that 2 devices do not share the same address before sending
this command. A full ACK message is returned.

Note the ACK is sent back from the original address, not the changed address. In other
words, the change to the ccTalk address field is done after the ACK is returned rather
than before.

e.g.
TX = 002 001 001 251 003 254 - Change from address 2 to 3
RX = 001 000 002 000 253 - ACK from address 2

20.2.4 Address Random, Header 250

Transmitted data : <none>
Received data : ACK

This command allows the addressed device to have its address changed to a random
value. This is the escape route when you find out that one or more devices share the
same address. Randomise their addresses and check them again. A full ACK message
is returned.

To simplify host software, any address clash is best dealt with by randomising the
entire network with the broadcast address. In this case, all peripherals will reply
together with an ACK which will be seen as garbage due to clashing. The host
software should therefore ignore all return bytes and communication errors
immediately after a broadcast randomise command.

Slave devices must not allow the random address value to be changed to 0 (the
broadcast address) or 1 (the host address).

Note the ACK is sent back from the original address, not the changed address. In other
words, the change to the ccTalk address field is done after the ACK is returned rather
than before.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 44 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

21. Discussion of Transitory versus Steady-state Events

The primary mechanism used to transfer information from a peripheral to the host
machine is through event polling.

For coin acceptors this is…
Header 229, Read buffered credit or error codes

For bill validators this is…
Header 159, Read buffered bill events

For hoppers this is…
Header 166, Request hopper status

The hopper is slightly different in that the status information just contains details of
coins paid and coins unpaid. The coin acceptor and bill validators can both report
events as well as credits.

Events can either be transitory such as…
 Coin going backwards
 Credit sensor timeout
 Invalid bill (due to validation fail)
 Stacker inserted

But there are other events which can possibly be permanent…
 Credit sensor blocked
 Sorter opto blocked
 Bill jammed in transport (unsafe mode)
 String fraud detected

The philosophy of ccTalk is to only report ‘set’ events back to the host but not ‘clear’
events. This cuts down on the number of events flying around - ‘String detected’ is not
followed by ‘String not detected’ etc. Events are not bracketed but are single-shot
notifications of anything unusual. To find out whether an event is still occurring, the
host should switch to a steady-state status command in an alternative polling loop.
The steady-state status is provided by the diagnostic commands available on all
peripherals.

For coin acceptors & bill validators these are…
Header 232, Perform self-check

For hoppers this is…
Header 163, Test hopper

The hopper test can be done if the paid coins (when the motor stops) is less than the
value requested. The reason for the underpay can be discovered by looking at the
hopper status flags. This may be due to the hopper bowl being empty or a deliberate
fraud attempt.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 45 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

So how does this actually work in practice ? See below.

Device-side Operation

Fault develops
Self-inhibit to prevent further acceptance of coins or notes
Latch fault code ‘B’
Report event ‘A’ when polled (single occurrence)
Report fault ‘B’ when polled

If the fault goes away then…
Re-enable to resume acceptance of coins or notes
Report fault ‘OK’ when polled
Report new events when polled

Host-side Operation

Poll events returns event ‘A’
Change polling loop to self-check diagnostics
Fault poll returns ‘B’

If the fault goes away then…
Fault poll returns ‘OK’
Change polling loop to events
Poll events returns new events as they occur

Operation is ‘safe’ in that the host machine is not required to take any action in the
event of a fault as the peripheral device will self-inhibit immediately. The ‘Modify
inhibit status’ and ‘Modify master inhibit status’ commands do not have to be sent.

The diagnostics loop should be reasonably tight (poll at least once per second) in
case the device recovers and new credit events are waiting to be polled. If the host
wishes to permanently shut down the device on first indication of a fault it can always
issue a master inhibit.

As can be seen, event code ‘A’ is mapped into a fault code ‘B’. Looking at the list of
event codes (Table 2, 7) and fault codes (Table 3) it can be seen that a one to one
mapping does not always exist. Fault codes generally relate to a physical component
or sensor whereas event codes relate to an activity or assumed activity. But it should
be straight forward to map one into the other and system integrity will not be
compromised by an incorrect mapping. It is merely data logging activities that are
affected.

For instance, we could map an event code of ‘Credit sensor blocked’ to a fault code of
‘Fault on credit sensor’. Whether the fault is due to a coin blocking the credit sensor
or a fault with the credit sensor itself does not really matter as far as the logic is
concerned. In fact, it is unlikely the coin acceptor itself can distinguish between the
two conditions.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 46 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

In actual operation, we could have a transitory ‘Credit sensor blocked’ event due to a
slow or partially trapped coin. If the condition remains then the coin acceptor will
report a ‘Fault on credit sensor’ until the coin frees itself or a service engineer is called
out to investigate further.

In this way, both transitory and steady-state events are handled by ccTalk.

Public Domain Document

ccTalk Generic Specification -  Money Controls - Page 47 of 47 - @BCL@20051412.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

22. Contact Information

Please pass any comments you have on the ccTalk specification or requests for new
features to…

Andy Barson,
Software Manager,
Money Controls Limited,
Coin House,
New Coin Street,
Royton,
Oldham,
Lancashire OL2 6JZ.
ENGLAND.

Tel: +44 (0) 161 678 0111
Fax: +44 (0) 161 628 5860

E-mail: abarson@moneycontrols.com

ccTalk Web Site: http://www.cctalk.org

Money Controls Web Site: http://www.moneycontrols.com

Wikipedia: http://en.wikipedia.org/wiki/ccTalk

Please check the cctalk.org web site for updates to this specification.

Trademark Acknowledgements

Microsoft Windows is a registered trademark of Microsoft Corporation.

